
How (not) to
run a software
development project
The top 10 most common noob
mistakes - so you can avoid them.

Tom Gracey,
Director at Virtual Blue

virtual.blue

Who is this list for?

Anyone setting out to run a software project, including:

•	 individuals taking the plunge with their first app
•	 bootstrapped and/or investor-funded startups
•	 new project managers taking the reins in an established company
•	 anyone else looking for more insight and tips for managing a software project

Q

A

Why do I need this? I know what I’m doing!

Are you sure? Evidence suggests you probably *think* you know what you are doing -
while the most likely reality is that you actually don’t!

Q

A

Ouch! Did that hurt? But I’m not trying to offend. It’s just a simple statement of fact, based on the
following 2 observations:

1. The vast majority of software development projects don’t even make it to market, let alone generate
any revenue. You can verify this fact for yourself by searching for something like “percentage of software
development projects that fail”. And when you hit on a Forbes article claiming that number is 85%, just
remember the business media generally refers to well-funded projects built by established companies. In
my opinion if we include shoestring-budget projects and bootstrapped startups that figure shoots into the
upper nineties. We really are talking about almost all projects. Based on statistics alone, your project is
almost certain to fail. The first step in defying these odds is accepting this is the position you are starting
from.

2. As an independent contractor often invited onto stalled or partially finished projects, I have personally
witnessed these failures firsthand. Time and time again. Over many years. I can tell you that the vast
majority of failures are for *exactly* the same reasons. The same mistakes repeated in an endless loop.
Software development Groundhog Day. And in every single one of those cases, the project leader thought
they knew what they were doing. (If they didn’t think they knew what they were doing, they might have
done some research - and perhaps not made those exact same errors.)

You got me! So, what’s on the list?

Read on to find out!

Q

A

virtual.blue

Complete guide
The top 10 most common noob mistakes
- so you can avoid them.
I have carefully arranged my list in the approximate time order the mistake is likely to occur (and not by
seriousness). If you are making a mistake toward the bottom of the list you probably have already avoided
the majority of the ones near the top. To rank them in terms of seriousness would be more difficult, since the
truth is any one of these errors has the potential to derail the whole project.

The mistakes towards the top of the list are therefore likely more *common*, since you can’t make a further
mistake if your project has already collapsed. Indeed, I would say that mistake no. 1 is by far the most
prevalent, and usually stops the project dead on day one. However, do remember this is all just a rough rule
of thumb; for example, it is perfectly possible for an outfit to have put together a clearly defined spec (no. 4)
while still vastly underestimating development costs (no. 1) - and I have witnessed this exact scenario.

Note that careful deliberation of what items to include meant also deciding what items to leave off. Yes, there
are pitfalls not listed. This is the “top 10”! Don’t think for a moment that if you avoid all the items on this list,
your project will automatically succeed. (If you want to know the rest of them, you can always hire us!).

How (not) to run a software development project

virtual.blue

How (not) to run a software development project

virtual.blue

Vastly underestimating
development costs1|

Software development seems to occupy a special position
on the engineering spectrum. For a start, unlike disciplines
such as mechanical or electrical engineering, it is frequently
forgotten that software development is engineering at
all. One reason for this may be that it is perhaps the most
mysterious of the engineering disciplines; very physical
projects such building cars or bridges are easy for the
layman to visualise, but the guts of the software systems are
almost always completely hidden from the user.

It’s common for the naive software system user to mistake
ease of use (“You just click the button!”) for ease of
development - when in truth the two are polar opposites.
The easier a system is to use, the more it is doing on the
user’s behalf, and the more effort needed to go into creating
it. It is common to hear the word “just” from newcomers
describing their expected feature list: “It’s just two-factor
authentication”, “It’s just geofencing” etc. When I hear this
kind of talk, I think to myself, “If you think it’s that easy, you
build it!”.

The consequence of this misunderstanding is an overall
under-appreciation of the work that is going to be
involved - often translating into a proposed budget that
is underestimated by a factor of 10 or more. I hate to be

the bearer of bad news, but the mature apps that you are
installing for a few dollars - or quite possibly free - cost tens
if not hundreds of thousands to create. That cost is covered
through advertising or volume of subscriptions. Not by
magically dividing development costs by wishfully dreamed
up factors of ten.

I refer to projects advertised with vastly underestimated
budgets as “$100 space rockets” - because that’s the
physical engineering equivalent. Normally these end with
the $100 being spent, but unfortunately no space rocket
appears. Instead, there’s just a very red-faced and angry
project owner cursing about broken promises (and often
moving right on to the next developer who is going to
promise to do the job for $100).

The lesson: You need to cost up your project
realistically based on estimated developer-hours,
and at a reasonable rate for a developer. You can’t
simply rely on quotes. See point 4 for a discussion
of this, and some tips on costing.

£

£

How (not) to run a software development project

virtual.blue

Aiming to develop a feature rich
application rather than an MVP

This error arises because most people use a variety of
software applications every day but generally never come
into contact with code that is actually being executed.
Imagine being surrounded by cars your whole life - except
the cars have invisible engines. If you look under the hood,
you only see some extra space to place your luggage. You’d
be forgiven for thinking cars run by magic - and this often
seems to be the misconception with software.

And since software works by magic, it seems tempting to
rattle off all the magical things you expect your imagined
software is going to do. The more magic that can be packed
into the description the better. After all, those tech savvy
developers are not going to think much of you if you don’t
wow them with your vision. Because of course this is your
overall objective: impressing the developer. Yes, I am joking!
But putting humour to one side, it seems there are plenty of
people out there who actually adopt this approach.

When coming up with your first feature list, it is easy to be
influenced by those apps you use every day. The problem
is most apps in common usage are already pretty mature
and have collected features and been refined over many
release cycles. The incremental improvements have been
made post-initial release, using real-world feedback from

the market. This has involved long hours of repetitive
testing and bug fixing. It doesn’t make sense to try and
create something like this from the outset; it’s just going to
be expensive and you’re probably going to waste time and
money adding features users don’t actually want.

What you need to remember is that every functional item
you add, down to the buttons, the form fields and the
“automatic” processes that happen in the background - each
and every one of these needs coding up and therefore adds
to the cost. So, what you want to do is ask yourself, “what is
the bare minimum set of features I need to include to make my
app perform the function it is intended for?” That’s going to
slim your costs to something you might actually be able to
afford. And by the way, if your core features don’t catch on
with your intended audience, then no amount of additional
bells and whistles is going to rectify that.

2|

How (not) to run a software development project

virtual.blue

You’re on the brink of commissioning a job that’s
going to cost several thousand dollars, but you’re
only going to bother writing a few vague sentences
to explain it. Can you see how this might go wrong?
Perhaps you think, “I don’t need to describe this task
completely, because I’m talking to experts. I only need
to give them a few rough instructions, and they will be
able to figure out what I want.” Wrong! The developer
has expertise in *how* to build software applications;
this doesn’t mean they are magically going to know
what you want to build. You’re expecting the
developer to read your mind; but unfortunately,
clairvoyance is not a skill most engineers are
equipped with.

Another possibility is that you think, “Well I don’t
actually really know *exactly* what I want. I’m hoping
the developer can ask me questions and we can arrive
at a plan together.” Yes, it’s reasonable to seek expert
assistance in creating technical specifications; but in
this case you really have two separate tasks
to complete:

In this case, consider hiring a developer to produce
a spec (task1) and start by advertising this job on its
own. This is a great way to test the waters and see
if you’re going to get along with the developer of
your choice. If all goes well and you’re happy with
the relationship, you can hire them again for the
implementation (task 2). By then they’ll be familiar
with the project and should be perfectly positioned
to carry out the instructions, since they helped decide
them in the first place.

However, whether or not you decide to commission
help with the planning of your project, remember
one thing: the specifications are *your* responsibility,
because it’s *your* project. There is no way around
the fact you need to communicate what you want
with the developer. Yes, you can be lazy and say,
“We’ll figure it out along the way through Q&A”,
but what this really means is that you’ll constantly
go down blind alleys as the developer repeatedly
misinterprets your vague instructions. That’s going to
equate to wasted time and effort, escalating costs and
a strain on your relationship.

The equation is simple: the more effort you put into
creating clear instructions, the more time, money and
headaches you will save - and the more successful
your project will be.

Aiming to develop a feature rich
application rather than an MVP3|

You can’t expect:
• 	 to go straight to implementation when there are no instructions to follow;
• 	 to get a reliable quote for implementation without specifications;
• 	 to have developers essentially work for free - pre-contract - asking you 	
	 questions to try and figure out what you actually want.

The creation of the specification
document; and

TASK 1:

The implementation of the
instructions within that document.

TASK 2:

Amman Q

Amman Q
No clear specifications

Amman Q
 ("spec") document

How (not) to run a software development project

virtual.blue

Estimating costs based
on developer quotes

This point may seem surprising and counter-intuitive:
you can’t automatically trust quotes you receive on
contracting websites - and you certainly can’t hire
on the basis of the quote alone. This is because
costing a software project can be complex and a
skilled task in itself. However at any one time there
is a demographic of developers who may have a solid
coding background but are quite inexperienced with
the costing process.

Costing a software project can be difficult even for
those who have been doing it for many years! The
problem with fixed-price bids for software work is
that developers are pressured to quote low to win
contracts. This normally means that for any given
contract there are going to be a percentage of bids
which are too unrealistically low for those developers
to actually honour.Now you might think, “if they quote
too low, that’s their own problem. A promise is a
promise!” In fact, this is normally the exact next step
that happens after going with the “$100 space rocket”
bid. You insist the work must be done for the stated
price - because you tell yourself that’s what you
agreed. But try doing a per-hour earnings calculation
for the developer. How many man-hours does it take
to create a space rocket? If you insist on paying the
developer $100 because “that’s what you agreed”
then you are insisting on an hourly rate that might
be measured in fractions of a cent. The developer
is going to starve to death before completing your
project! Obviously, this kind of practicality is going
to put a limit on how successful you are at holding
someone to a price “because that’s what you agreed”.
The developer is going to eventually consider
their own survival to be more important than your
agreement.

And now we arrive at the next phase: there are
arguments, the developer jumps ship, and you are left
with a stalled project. Maybe you are able to get some

funds refunded through the contracting platform, or
from the developer directly (because they now just
desperately want out of the contract so that they can
find a way to start actually earning enough money to
live on) - or maybe not. Either way you have a half-
finished project which is going to be difficult for a
new developer to pick up and which might cost more
to rescue than simply to start again. The “cheapest”
option turned out to be the most expensive.

The lesson is that you have a responsibility to check
quotes are realistic yourself. In fact, it is better if you
can obtain a rough costing calculation independently
of any quotes. In the absence of prior experience with
costing software features, here’s a neat trick: post
your app feature list on a Q&A website (like Quora,
Reddit, StackOverflow etc) - targeting professional
programmers with your question - and ask, “How
many developer-hours do you estimate these features
should take to build?” Note that it’s better to word
the question in terms of developer-hours, because
professional coders usually get paid salaries and so
don’t think in terms of costs. Answer any questions
they fire back at you in as much detail as you can. The
great thing about this exercise is you’ll get honest
answers; there will be no competing to present the
lowest price. You might encounter some disagreement
- but that will likely turn out to be a good thing,
because then there will be an argument and an
eventual consensus. If you can keep the thread alive
with suitable prompting, you’ll learn a lot about the
challenges of your own project and where the costs
will lie. Then in the final step you can simply multiply
the developer-hours estimate by a reasonable rate for
a developer. Now cross reference this figure with any
future quotes and use it to reject the $100 space-
rocket bids (and future stalled project).

4|

How (not) to run a software development project

virtual.blue

Giving the developer too
many responsibilities5|

This problem can stem from trying to stretch a thin
budget far beyond its elastic limit. You hire a developer at
a cut-throat rate and then expect them to perform non-
development tasks that are far beyond their remit.

The “classic” example of this - being the most obvious and
common - is to expect your developer to also be a designer.
Just pass them a vague description of an interface and
expect it to magically appear with slick aesthetics. This
problem is often exacerbated by the fact developers tend
to like playing around with design - even though they are
generally not very good at it. So, they probably won’t give
you a heads up, “Hey, by the way it’s probably better if you
get an actual designer to come up with some screens”.

It’s a good idea to plan screens and layouts early on,
because architecture and interactivity can often be tied
to the design. If instead you simply leave this up to the
developer and then go along with whatever is produced,
you may well end up with an ugly looking product which is
difficult to back out of.

Other inappropriate responsibilities that can be handed
to the developer (often inadvertently) include expecting
them to:
•	 create the feature list
•	 purchase server hosting, email accounts and other 		
	 infrastructure services
•	 make business or marketing decisions
•	 inject some kind of magic ingredient into your plan to 	
	 make it “even better”

This last point seems to frequently recur among outfits
launching “trading bot” projects. Directly in the job post
demands are made like, Iinclude any innovative features
you would recommend integrating into the bot”. So, the
developer needs to come up with a killer trading strategy,
on top of actually building the system? And what are you
going to pay them - $100? If they actually had a killer
trading strategy together with the skills to build the bot, why
wouldn’t they just create it themself? (And the owner’s input
is going to be...?)

The theme among these examples is lazy project
management. Expecting you can just take your hands off
the wheel and glide smoothly to your destination. That’s not
going to end well!

The solution is simple: take responsibility! With
every new task that comes along ask yourself,
“Who is the most appropriate person for this task?”
If the task is not development, then maybe the
answer is not “the developer”. And if you can’t find
someone suitable to delegate it to, maybe you
should consider doing it yourself.

How (not) to run a software development project

virtual.blue

No allowance made for extensions,
revisions, maintenance and marketing

If you think that fixed development fee you negotiated back
at the start is going to be the sum total cost to build your
project, think again. This assumption is not just wrong, it’s
likely to be wrong by at least a factor of two - and possibly
over the course of the software’s lifetime, a factor of 10 or
more (assuming the software is successful).

What you need to remember is that any software project is
more like a marriage than a one-night stand. Unfortunately,
it’s an ongoing commitment! One reason is because pretty
much all software (there are some exceptions, but these
are unlikely to be applicable in your case) rides upon a
constantly changing environment. If you’ve ever heard of
the “Red Queen” theory from evolutionary biology, then the
same basic principle applies: “It takes all the running you
can do to stay in the same place” (originally a quote from
the character “the Red Queen” in Lewis Carroll’s “Alice in
Wonderland”).

In evolutionary biology the “Red Queen Theory” refers to
a constantly changing natural environment. In software
development the changing environment is man-made. The
operating system(s), open-source libraries, APIs, websites
and any other third-party software your project relies on
are all in a constant evolutionary cycle; updates are going
in, new versions are being released, old versions are being
discontinued etc. It takes constant effort to stay on top of
this. In fact, it is advisable to have some kind of maintenance
arrangement already in place for the moment your software
goes live.

Maintenance is an important reason why you need to have
additional funding at the ready from the outset, but there
are also business considerations. For one, as soon as your
app gets out into the real world and people actually start
using it, you’re going to find you need to make changes.

What you imagine users are going to do and what they
actually do are often two very different things. This is one
reason it is better to get the app to market with minimal
features first, and then evolve it based on real-world
feedback - rather than building what you *imagine* users are
going to want.

Indeed, the market itself is a constantly changing
environment. New tools are making old tools obsolete
every day. Competition appears and disappears. Fashions
come and go. A particular tool that might create a buzz at a
certain time may receive a lukewarm reception at another.
Most successful software producers engage in a constant
update and release cycle to stay on top of changing market
conditions.

Finally, it’s easy to underestimate how much money you’ll
need for marketing. It’s very unlikely that simply going live
with a new website, releasing your app on Google Play
etc. will be enough to hook in a substantial user base. The
amount of marketing you’ll need depends on the type of
software application you release, how much competition is
around, whether you have existing customers and so on -
but bear in mind a realistic figure for marketing can often be
many multiples of the development cost.

6|

How (not) to run a software development project

virtual.blue

This one bit you some distance down the road.
Everything seemed great at the beginning -
development was roaring along. You just told the
developer, “I need a widget x that does X” and lo,
that widget appeared - and sure enough it did X.
So, you said, “Well done, developer! Now I need a
widget y that integrates with x to do Y” - and once
again the widget sprung out of the ether, and just
as requested, it integrated with x to do Y. But by the
time you needed widget z which was supposed to
integrate with x and y to do Z, progress had slowed
significantly. You had started to notice areas that
seemed to work perfectly previously - like widget x
- were now breaking regularly whenever there was a
new release.

Sometimes you’d be browsing your own system and
discover a feature was broken and must have been
broken for some time. It was starting to get difficult
to even know what was working and what wasn’t
- and which areas would break on the next update.
You would identify a bug, and a fix would go in for it,
only for a new bug to be introduced elsewhere - and
discovered weeks later. Your frustration with the lack
of progress grew steadily alongside the growth of
your not-quite-functional platform. You were burning
through funds rapidly, but that polished interface
you were hoping for always seemed just out of reach.
Your relationship with the developer was fraying at
the edges; you’d find yourself losing your temper
with them and demanding to know why there were
so many problems. They suddenly seemed a lot less
available, and one day they just disappeared.

“Good riddance!” you cried. “Now I’ll find a real
developer, who actually knows what their doing!”
So, you put a new job post up and invited a fresh
set of developers to look over your codebase. One
by one they all told you the same thing: your code
was spaghetti, and it would probably cost as much to
rescue as it would do to start again. Once again that
“cheap” developer rate you were paying had turned
out to be the most expensive.

Unfortunately, this scenario is far from fantasy. I see it
on a regular basis, most often in the context of being
invited to do the rescuing. In fact, I believe it is so
common that for every tidy, functional codebase there
are hundreds of abandoned, half-finished spaghetti
heaps sitting around on dusty hard drives because
their delusional owners can’t bring themselves to
delete them completely.

And there is a common theme which pervades all
these cases: during development the owner did not
look at what was happening under the hood. Now
at this point maybe you throw up your arms and say,
“But how am I supposed to be able to tell good code
from bad code? I don’t know how to code!” To that I say,
imagine you are inspecting the engine of a car. Would
you not be able to distinguish good design from bad
design - at least at some level - even if you weren’t
a mechanic? If the engine consisted of perfectly
congruent and smoothly polished chrome parts, with
precisely aligned rows of bolts and tidy wiring, you’d
probably say, “Well this engine looks in good shape”.

But not if you looked under the hood and saw loose,
ill-fitting parts dripping oil, tangled wires and missing
bolts.

Paying no attention to
architecture or code quality7|

How (not) to run a software development project

virtual.blue

All you need to do is the equivalent when you look
under the hood of your software project. Your aim
is just to check the project is organised sensibly and
tidily. Now admittedly you’re definitely going to do a
better job of this if you learn some development best
practices - such as how to identify hard coding and
the “DRY” (“don’t repeat yourself”) principle. But these
only take an hour or so to read up on and understand!
It would also help to research the component
technologies that are being used on your project,
so you have some understanding of how they fit
together. For example, the choice of database system,
the languages and the frameworks.

Look under the hood on a regular basis. Poke around.
Put code lines into search engines and find out what
they do. The more often you inspect the codebase,
the more familiar and confident you will become with
it - and the less daunting it will seem.

Now here’s the secret ingredient: let the coder know
you are interested in the codebase, and that you
are including code quality as a measure of success.
If you only test functionality from the perspective
of a user, you encourage the developer to abandon

code quality. Over time they get used to the fact no-
one is checking and take to cutting more and more
corners - particularly if they feel pressure to produce
features quickly. Don’t put pressure on the developer
to produce features as quickly as possible! On the
contrary, be suspicious of rapidly developed features.

The coder will adapt to the manner of your oversight.
If they know you are making an effort to measure
code quality, they will take more care with it.
Development may seem slower at the start, but as
the project gets larger, you’ll keep on making progress
at the same steady rate - and everything will fit
together smoothly and work as it is supposed to.
Keep inspecting the code. Don’t be afraid to challenge
design choices and ask questions.

Paying no attention to
architecture or code quality7|

Remember: in software development nothing
is more expensive than technical debt - it can
write off an entire project without it earning a
penny. You need to take it seriously and take
appropriate precautions.

How (not) to run a software development project

virtual.blue

“False beginners”
hiring chain

Congratulations - you made it to point number 8! That
means you managed to avoid mistakes 1 to 7 and
have successfully released your app onto the market.
The promising early subscriptions have impressed an
investor, and you’ve been able to secure a new round
of funding. Great work! Now it’s time to expand your
development team.

You think to yourself, “I’m going to need to conduct
technical interviews. But I can’t really do this myself,
because my background is not technical. What
should I do?” Of course, the solution seems obvious:
you already have a technical member of staff - the
developer you hired in the first place. They must know
their stuff - after all they’ve got you this far, right?
So, you decide to handle “team fit” interviews yourself
- but assign “technical” interviews to your current
developer. “Go off and conduct some interviews,” you
say to your developer, “And then come back and tell
me - in your opinion - which applicant has the best
technical skills”.

There are a number of problems with this approach.
Firstly, interviews and hiring are a completely different
ballgame to hands-on development work. Your
developer has been coding solidly day-in, day-out for
years - but conducting interviews is an entirely new
activity, which they don’t necessarily have experience
with. Just because they are technically accomplished
doesn’t mean they are automatically well-placed to
recognise technical skills in another individual. For
example, they may ask questions based on their
own specific knowledge - and if the applicant does
not share that specific knowledge, conclude the
applicant is not suitably skilled. In reality, no two
individuals share exactly the same knowledge base,
and so those specific questions are not going to reveal

the applicant’s actual expertise. Furthermore, the
developer may not ask questions in a manner that
elicits desirable qualities such as problem-solving
skills or communication.

But the biggest issue with relying on your existing
developer to grade applicants’ technical skills may
come down to motivation. What is the developer
going to do if they encounter an individual more
able or accomplished than themself? Are they going
to say, “Wow, I’m blown away. I’m recommending
we hire you as my supervisor!” Unlikely, don’t you
think? Given the developer receives a fixed payment
rate, which is not directly tied to the success of the
business, their primary motivation is always going
to be preserving and advancing their own position.
They may not be inclined to hire someone who they
perceive might threaten their comfortable perch - and
instead find excuses why that particular applicant
would not be a suitable hire.

8|

How (not) to run a software development project

virtual.blue

“False beginners”
hiring chain continued...

The fact is, you didn’t hire the best developer in the
world in the first place; you just tried to get a good
deal. The only reason developer A is interviewing
developer B is because you hired developer A first.
If you had hired developer B first, they would be
interviewing developer A. If A is better than B and
you hire A first, then you might get both A and B. But
if you hire B first then you’ll never get A - or anyone
else better than B. Your strategy of enlisting the first
developer you hired to hire subsequent developers
may result in ensuring the first developer is the best
one you ever get.

“If each of us hires people who are smaller than we
are, we shall become a company of dwarfs.” - David
Ogilvy (the “father of advertising”). Can you really
trust an inexperienced interviewer with a vested
interest *not* to do that?

Once again, the solution lies with you. You are
ultimately responsible for who is hired, so you should
take steps to ensure you have complete oversight of
the hiring process. But how do you conduct those
technical interviews without a technical background?
Short answer: you don’t.

In fact, recent research has shown that evaluations
from unstructured interviews are not particularly good
predictors of future job success, whether conducted
by a “technical” person or otherwise. Without a formal
scoring system, evaluators tend to fall back on their
own personal biases - and pick the candidate they
like the most, rather than the one most suitable for
the position. The answer is to ditch the technical
interview in favour of a more formal technical test
with a rigorous pre-defined scoring system. That
scoring system is all-important; “rigorous” means
that every point should have a specific, checkable
reason for being awarded (or not). There should be no
subjective grading (e.g. “give the candidate a mark out
of 10 for how good his subroutine is”).

You can feel free to involve your existing developer
in the creation and even the grading of the test - the
formal scoring system will make it difficult for biases
and personal motivations to influence the results. Just
make sure to double check that, during grading, the
scoring system is being properly applied.

8|

How (not) to run a software development project

virtual.blue

Assuming “Scrum” (or other
“development methodology”) will save you9|

Now you’re really getting into the bigtime! Your operation
has expanded and you’ve got yourself a whole team. But
how to manage them? You have to admit, you’re feeling
a little bit out of your depth. You have the responsibility
of managing a group of people who all possess technical
skills - while you don’t have these yourself. They know more
about the project than you do! So what value is your input
going to have? The answer, you reason, is to implement a
“development methodology”, like “Scrum”. After all, that’s
what big businesses are always raving about, isn’t it? If you
implement Scrum then your responsibility automatically
becomes clear - you are the one who directs the Scrum-like
activities: stand-up meetings, writing “user stories” on post-
it notes and collecting them onto “story-boards”, organising
the voting on the point assignment of tickets, holding
“retrospective” meetings where you ask developers to write
their feelings on more post-it notes. Sounds productive,
right? (And not at all childish or patronising...)

Whilst you are indeed going to need some kind of system to
organise your team - and this is likely to include conventions
for tracking issues, communication and task-assignment - it
is a mistake to think that implementation and maintenance
of this system is all you require to succeed. This is like being
in charge of a fleet of vehicles, and thinking all you need to
do is arrange them in a nice, neat convoy and you’ll get to
your destination. They’re going to drive round in circles in
that nice, neat convoy because no-one is telling them where
to go.

To know where you need to go means fundamentally
understanding the project you are working on, and
coordinating efforts so they are all in the direction of the
overall objective. You can do this using an organisational
system like Scrum - but you could equally do it with another.
Thinking the set of conventions you choose is the important
part is like thinking the important part of communication is
whether it is done using post-it notes or not.

Actually, if you have made it to this point organically as a
founder of your own operation, and you have essentially
been adhering to the principles I have outlined in previous

points, I think it is unlikely you’ll jump to this kind of
practice - at least not intentionally. This is because by
now you probably already understand your own role and
the value it adds. You’ve been taking a regular interest in
what is happening under the hood and have a reasonable
comprehension of it. You know you have a responsibility
to control code quality. You’ve realised that developers
are great at carrying out well-defined assignments - but
need your input in choosing the assignments. You’ve been
steering the ship successfully up to this point, because you
are the one with the vision and an eye on the objectives.

Most often this mistake is made not by founders, but by
middle managers coming on to a project that is already
under development. As a founder, you are more likely to
meet it in the context of manager(s) (or perhaps consultants)
trying to persuade you of the benefits. Be wary of
development methodology aficionados; these people are
often falling back on management bureaucracy as a band-
aid for their own imposter syndrome - to mask the fact they
don’t actually know what they are doing. The tell-tale sign
is that they try to operate purely via endless meetings and
they make their decisions by “consensus” to hide the fact
they don’t feel equipped to make decisions by themselves.
They don’t look under the hood, and don’t find the time to
gain insight into the actual project.

The solution is simple: avoid being charmed by development
methodology salesmen and their promises of greater
productivity. If your system is not working for some reason,
you need to take practical steps to fix it.But this probably
doesn’t mean totally abandoning the one you have in favour
of adopting a completely different one. Be suspicious
of middle managers pushing for the adoption of new
development practices; always ask yourself whether what is
being advocated is really going to add value. Above all, don’t
take your eye off your projects’ real objectives.

How (not) to run a software development project

virtual.blue

I decided to make this the last on the list,
because although it can occur at any point during
development, it has the capacity to do the most
damage when a system is already reasonably mature.

Software development has always had a lot of fads.
New methods or technologies which suddenly
become all the rage, and simply everyone is suddenly
feverishly implementing them, and raving about the
wonders. Only in a small percentage of cases does the
hysteria turn out to have foundation; more often than
not the enthusiasm fades leaving behind mountains
of semi-functional code, in many cases created using
tools that developers have already stopped learning.
You only need to look at the evolution in popularity of
front-end frameworks to confirm this is the case.

As a project director you’ll meet this in practice when
developers start complaining your existing system is
“out of date” - and that it “needs to be rewritten” in
shiny new language X (or even worse, have actually
started the rewrite without your consent). The
mistake is to get swallowed up in the hysteria and
go along with the recommendations. Remember the
golden rule: if it isn’t broken, it doesn’t need fixing!

Always be suspicious of calls for rewrites. Calls for
rewrites have literally bankrupted businesses. The
classic is Netscape Navigator. Once upon a time NN
was the world’s most popular browser - but where is it
today? Well, they tried to rewrite it!

Ask the developer why they think a rewrite is
necessary. If they say it’s because the feature has bad
architecture and is too much of a mess to be rescued,
then the call might be valid. However, if the answer is,
“because no-one is using this language/tool anymore”
then it’s time to put on the brakes. Remember: users
don’t care what technologies are being used so long
as the app works and is useful to them. This is your
priority - not whether it is built according to the latest
development trend.

Getting sucked
into fads10|

CONCLUSION
If you’ve been paying attention, you’ll notice the above points all have solutions that share a common theme
which can be summarised in a single word: effort. The success of your project depends on how much effort
you personally are prepared to put in. Abandon your duties and abandon your project. Hands off, and you
crash. But if you maximise your involvement and embrace your responsibilities, you’ll naturally avoid the
pitfalls - and reap the rewards.

